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THE RARITY OF DNA PROFILES1

Bruce S. Weir
Department of Biostatistics, University of Washington, Seattle, Washington 98195, USA

Abstract
It is now widely accepted that forensic DNA profiles are rare, so it was a surprise to some people
that different people represented in offender databases are being found to have the same profile. In
the first place this is just an illustration of the birthday problem, but a deeper analysis must take into
account dependencies among profiles caused by family or population membership.
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1. Introduction
In the 20 years since the introduction of DNA profiles for forensic identification there has
developed a wide-spread belief that it is unlikely two people will share the same profile.
Assuming at least 10 alleles or 55 genotypes at each locus, a 13-locus system in common use
allows for at least 1021 different profiles, which far exceeds the total number of people in the
world. It is difficult to attach a meaningful estimate to the probability that a person chosen at
random would have a particular profile, but a good first step is to assume independence of all
(26) alleles in a profile to arrive at an estimate that “reaches a figure altogether beyond the
range of the imagination” in the language Galton (1892) used to describe probabilities for
fingerprints. Given such arguments, what is to be made of recent findings that the profiles of
two people in a database of offender profiles either match or come very close to matching? Is
there a need to re-think the understanding that profiles are rare?

There are forensic, statistical and genetic aspects to discussions of profile rarity. The key
forensic issue centers on the comparison of two profiles, often one from a crime-scene sample
and one from a suspect. The relevant calculations must recognize the existence of two profiles
rather than focusing on only one of them. The statistical aspects are addressed initially by the
“Birthday Problem.” The probability that a person chosen randomly has a particular birthday
is 1/365, ignoring leap-year complications, but there is over 50% probability that two people
in a group of 23 people share a birthday. This result recognizes that the number of pairs of
people, 253, is much greater than the number of people, 23, and that the particular shared
birthday is not specified. The finding of DNA profile matching in an Arizonan database of
65,000 profiles [Troyer, Gilroy and Koeneman (2001)] becomes less surprising when it is
recognized that there are over two billion possible pairs of profiles in that database. The genetic
aspects rest on the shared evolutionary history of humans. The very fact that the population is
finite means that any two people have shared ancestors and the resulting dependencies increase
the probability of profile matching.
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2. Forensic issues
The interpretation of DNA forensic evidence E requires the probabilities of that evidence under
alternative hypotheses, referred to here as Hp and Hd for the case where they represent the
views of prosecution and defense in a criminal trial. A simple scenario is when the profile
GC of a crime-scene stain matches that, GS, of a suspect. The hypotheses may be as follows:

A quantity of interest to those charged with making a decision is the posterior odds of the
prosecution hypothesis after the finding of matching DNA profiles:

From Bayes’ theorem,

and it is the likelihood ratio LR that is estimated by forensic scientists. In paternity disputes
this quantity is called the paternity index. Those who equate Pr(E|Hp) and Pr(Hp|E), as in “The
odds were billions to one that the blood found at the scene was not O.J.s” [Anonymous
(1997)], are said to have committed the “Prosecutor’s Fallacy” [Thompson and Schumann
(1987)].

The likelihood ratio for a single-contributor DNA profile can be expressed as

by recognizing that the crime-scene stain profile does not depend on the alternative hypotheses
and that the two profiles must match under the prosecution hypothesis. Among the many
advantages of adopting this approach to comparing competing hypotheses is the clarification
that it is match probabilities Pr(GS|GC) for profiles from two people that are relevant rather
than profile probabilities Pr(GS). In the discussion of matching profiles in a database, GC and
GS can refer to the profiles from different people and the issue is whether or not matching is
unlikely.

3. Statistical issues
Diaconis and Mosteller (1989) discussed basic statistical techniques for studying coincidences
and stated the law of truly large numbers: “With a large enough sample, any outrageous thing
is likely to happen.” Can we attach probabilities for very unlikely events to occur? In the
forensic context, Kingston (1965) addressed match probabilities long before the advent of DNA
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profiling. If a particular item of evidence has a probability P, then he assumed that the unknown
number x of occurrences of the profile in a large population of N people is Poisson with
parameter λ = NP. Suppose a person with the particular profile commits a crime, leaves
evidence with that profile at the scene, and then rejoins the population. A person with the profile
is subsequently found in the population and a simple model says that the probability that this
suspect is the perpetrator is 1/x. Although x is not known, it must be at least one, so the
probability that the correct person has been identified is the expected value of 1/x given that
x ≥ 1. Those people who would equate x to its expected value λ and then assign equal
probabilities to all λ people are said to have committed the “Defense Attorney’s
Fallacy” [Thompson and Schumann (1987)].

Balding and Donnelly (1995), referring to Eggleston (1983) and Lenth (1986), pointed out that
Kingston’s conditioning on at least one individual having the profile is not the same as the
correct conditioning, that a specific individual (the suspect) has the profile. They gave a general
treatment of this “island problem” and then Balding (1999) followed with a discussion of
uniqueness of DNA profiles. He started with the event that a person (the perpetrator) sampled
at random from a population of size (N + 1) has a particular profile. The remaining people in
the population each have independent probability P of having the same profile. A second person
(the suspect) is drawn from the population and may be the same person as the first (event G).
The second person is found to have the same profile as the first (event E). If U is the event that
the suspect has the profile and that no-one else in the population has the profile, then

Now Pr(G|E) = Pr(E|G) Pr(G)/[Pr(E|G) Pr(G) + Pr(E|Ḡ) Pr(Ḡ)] by Bayes’ theorem, and Pr(E|
G) = 1, Pr(E|Ḡ) = P, Pr(G) = 1/(N + 1). Moreover, for independent profiles, Pr(U|G, E) = (1 −
P)N so that Pr(U|E) > 1 − 2λ. For the USA, with a population of about 3 × 108, a profile with
a probability of 10−10 would give λ = 0.03 and the probability that the correct person has been
identified of at least 0.94. This is not as dramatic a number as the original 10−10.

The birthday problem has to do with multiple occurrences of any profile, not a particular profile
as treated by Kingston and Balding. Mosteller (1962) refers to the latter as the “birthmate
problem.” The probability that at least two of a sample of n people have the same unspecified
birthday (or DNA profile), in the case where every birthday (or profile) has the same probability
P, is

For the USA example of P = 10−10, the chance of some profile being replicated in the population
of N = 3 × 108 is essentially 100%. The Arizona Department of Public Safety [Troyer, Gilroy
and Koeneman (2001)] reported a nine-locus match in a database of 65,493 for a profile that
had an estimated probability of 1 in 7.54 × 108. Using that probability, the chance of finding
two matching profiles in the database would be about 94%, so the finding is not unexpected.
DNA profiles do not have equal or independent probabilities, however, so these calculations
are approximate at best.
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4. Genetic issues
DNA profiles are genetic entities and, as such, are shaped by the evolutionary history of a
population. Whereas it is sufficient to take samples from a population to provide descriptive
statistics of that particular population, predictions of matching probabilities that recognize
evolutionary events are necessarily expectations over replicate populations. There is no reason
to believe that a particular population has properties that are at expectation.

As a simple example, consider the estimation of profile probabilities at a single locus A. If a
sample of n genotypes provides estimates p̃i for the frequencies pi of alleles Ai, then genotypic

frequency estimates are  for homozygotes Ai Ai and 2p̃i pj̃ for heterozygotes Ai Aj under the
assumption of random mating within the population. Taking expectations of these estimates,
over repeated samples from the same population and over replicates of the sampled population,
provides

[Weir (1996)] to introduce the population coancestry coefficient θ which measures the
relationship between pairs of alleles within a population relative to the relationship of alleles
between populations. To illustrate the meaning of “relative to” consider a fanciful example of
a large community of people, all of whom are first cousins to each other. If these people pair
at random, their children will form a population in which genotypic frequencies are products
of allele frequencies. A child’s two alleles, one from each parent, are independent. From the
perspective of an observer outside the community, however, the allele pairs within the
community appear to be dependent, with θ= 1/16. This value of θ is needed to predict genotypic
frequencies for the community children on the basis of population-wide allele frequencies.

For large sample sizes, the expected genotypic frequencies reduce to the parametric values
 and 2pi pj (1 − θ). The sample allele frequencies p̃i are unbiased for the

parametric values pi and θ is serving to provide the variance of the sample values—in particular,
pi (1 − pi)θ is the variance over populations of allele frequencies within one population. In the
situation where alleles are selectively neutral, it is convenient to regard θ as the probability
that a random pair of alleles in the same population are identical by descent, ibd, meaning that
they have both descended from the same ancestral allele. Identity by descent is also an
expectation over replicate populations.

The probabilities of pairs of genotypes require measures of relationship analogous to θ but for
up to four alleles. Two individuals that are both homozygous Ai Ai for the same allelic type,
for example, may carry two, three, four or two pairs of alleles that are ibd. For the class of
evolutionary models where there is stationarity under the opposing forces of mutation
introducing genetic variation and genetic drift causing variation to be lost, and allelic
exchangeability, these higher-order ibd probabilities may all be expressed in terms of θ. The
distribution of allele frequencies over replicate populations is Dirichlet for this class of models
and a very useful consequence is that the probability of drawing an allele of type Ai from a
population given that ni of the previous n alleles drawn were of that type is [niθ + (1 − θ)pi]/
[1 + (n −1) θ] [Balding and Nichols (1997)]. This provides, for example, the probability of two
members of the same population being homozygotes Ai Ai:

Weir Page 4

Ann Appl Stat. Author manuscript; available in PMC 2008 November 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



From this and similar expressions for other genotypes, it is possible to predict the probability
that two members of a population will match, that is, have the same two alleles at a locus
[Weir (2004)],

The first line specifies the genotypes, the second shows the corresponding sets of alleles, and
the third shows the value from the Dirichlet assumption. Random mating is assumed for the

second line. The third line employs the notation  k = 2, 3, 4, and D = (1 + θ) (1 +
2θ).

Partial matches occur when two individuals share one allele at a locus, rather than the two
required for a match. As Diaconis and Mosteller (1989) said: “We often find ‘near’
coincidences surprising.” The probability that two individuals partially match is

with the same meaning for the three rows as for P2. Finally, for two individuals to mismatch,
that is, have no alleles in common,

Values of P2 are shown in Table 1 for 13 commonly-used forensic loci, using Caucasian allele
frequencies reported by Budowle and Moretti (1999) and various values of θ. Assuming
independence of these loci, the full 13-locus match probabilities are the products of the 13
separate values and these products are also shown in Table 1. The probabilities of finding at
least one matching pair among 65,493 individuals are given in Table 1, along with the sample
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size needed to give a 50% probability of at least one match. The column headed “Actual” shows
the proportion of pairs of profiles that match at each locus in the very small sample of 203
Caucasian profiles reported by the FBI [Budowle and Moretti (1999)].

The finding of Troyer, Gilroy and Koeneman (2001) was for a pair of profiles that matched at
nine loci, partially matched at three loci and mismatched at one locus. It is shown in Table 2
that, in fact, 163 such pairs of individuals are expected when loci are assumed to be independent
and θ= 0.03. This value of θ has been suggested as a very conservative value to use for forensic
calculations [National Research Council (1996)], and Table 1 shows that value makes all 13
predicted match probabilities greater than FBI observed values. It would be of interest to
examine the dataset of Troyer, Gilroy and Koeneman (2001) to see the level of agreement
between observed and expected numbers of matches and partial matches. Weir (2004) was able
to examine an Australian dataset of 15,000 profiles and showed (Table 4) very good agreement
when θ was set to 0.001. The agreement was not as good when θ was set to zero. Table 3 shows
observed and expected numbers of match/partial match combinations for the Caucasian data
of Budowle and Moretti (1999). The sample size is too small to have more than six loci with
matches and is really too small to allow strong conclusions about the role of θ to be made. This
example shows good overall agreement between observed and expected values for θ= 0.
Examination of actual offender datasets is needed.

It is clear, however, that instances of matching and partially matching profiles are not
unexpected in offender databases.

5. Effect of relatives
The previous results accommodated the effects of shared evolutionary history on the
probabilities that two individuals have the same genotype. These probabilities are increased if
the individuals have a shared family history. Allowing for this degree of relatedness, but still
assuming random mating within a population so there is no inbreeding, requires the
probabilities k2, k1, k0 that the individuals have received 2, 1 or 0 pairs of alleles identical by
descent from their immediate family ancestors. Values for these probabilities for common
relationships are shown in Table 4. Individuals that share two pairs of ibd alleles must have
matching genotypes. Those that share one pair of alleles ibd may either match or partially
match, and individuals with no ibd allele sharing may match, partially match or mismatch.
Therefore, the probabilities that two individuals match, partially match or mismatch at one
locus are

Equivalent results were given by Fung, Carracedo and Hu (2003). Numerical values for the
matching probabilities for the 13-locus system described in Table 1 are shown in Table 5 for
common relationships. Clearly, the probabilities increase with the degree of relationship.

Pairs of relatives with related common ancestors within their family are inbred, and the three
ibd probabilities k2, k1, k0 must be replaced by a more extensive set of nine probabilities Δi, i
= 1, 2, …, 9, for the various patterns of ibd among all four alleles carried by the two relatives
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[Weir, Anderson and Hepler (2006)]. These are defined in Table 6, along with numerical values
for the situation of full sibs whose parents are first cousins. The various matching probabilities
become

Relatedness will increase the probability that two individuals will have matching or partially
matching DNA profiles and it would not be surprising if very large offender databases had
profiles from related people. It is difficult, however, to turn the question around and infer
relatedness of people whose profiles have a high degree of matching. The current set of less
than 20 STR loci is not enough to give good estimates of the degree of relatedness [Weir,
Anderson and Hepler (2006)], and even unrelated people can have very similar profiles.

6. Discussion
DNA profiling has proven to be a powerful tool for human identification in forensic and other
contexts. Different people, identical twins excepted, have different genetic constitutions and
it is hoped that an examination of a small portion of these constitutions will allow for
identification or differentiation. Current forensic DNA profiling techniques examine between
10 and 20 regions of the genome, representing of the order of 103 of the 109 nucleotides in the
complete genome. Nevertheless, the probability that a randomly chosen person has a particular
forensic profile can easily reach the small value of 10−10. Even when the forensic scientist is
careful to present probabilities in the preferred format such as “the probability of a person
having this profile given that we know the perpetrator has the profile,” the numbers remain
small and the evidence that a defendant also has that profile can be compelling.

Given the widespread belief that specific forensic profiles are rare, there has been some concern
expressed at the finding of matching or nearly matching profiles in databases of less than
100,000. Such findings were predicted by Weir (2004), unaware that they had already been
reported [Troyer, Gilroy and Koeneman (2001)] for the case of two profiles matching at nine
of 13 loci. At the simplest level, the apparent discrepancy is merely an application of the
birthday problem. If all DNA profiles have the same probability P, and if profiles are
independent, then the probability of at least two instances of any profile in a set of n profiles
is approximately 1 − exp(−n2P/2). This probability can be large even for small P and it can be
50% when n is of the order of . The widespread practice of collecting profiles from people
suspected of, arrested for, or convicted of crimes has already led to the establishment of large
databases: the National DNA Database (NDNAD) in the United Kingdom had over three
million profiles in February 2006 and the Combined DNA Index System (CODIS) in the United
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States had over four million profiles in February 2007. These and other national databases are
growing.

This note has looked a little more closely at the probability of finding matching profiles in a
database. The first observation was that DNA profiles are genetic entities with evolutionary
histories that impose dependencies among profiles. The formulation of dependencies was made
for single loci, but there is empirical evidence [Weir (2004), Figure 1] that sufficiently large
“correction” for dependencies within loci will also accommodate between-locus dependencies.
This means taking sufficiently large values of the parameter θ.

Incorporation of “θ-corrections” for the case of unrelated individuals refers to the dependencies
generated by the evolutionary process. These would not be detected from observations taken
solely within a population, but they are necessary to enable predictions to be made. Predictions
need to take variation among populations into account. Additional dependencies due to
nonrandom mating, leading to within-population inbreeding, were considered by Ayres and
Overall (1999).
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Table 4

Identity probabilities for common family relationships

Relationship k2 k1 k0

Identical twins 1 0 0

Full sibs 1
4

1
2

1
4

Parent and child 0 1 0

Double first cousins 1
16

3
8

9
16

Half sibs 0 1
2

1
2

Grandparent and grandchild 0 1
2

1
2

Uncle and nephew 0 1
2

1
2

First cousins 0 1
4

3
4

Unrelated 0 0 1
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Table 5

Matching probabilities for common family relationships (with θ = 0.03)

Locus Not related First-cousins Parent–child Full-sibs

D3S1358 0.089 0.124 0.229 0.387

vWA 0.077 0.111 0.213 0.376

FGA 0.048 0.078 0.166 0.345

D8S1179 0.083 0.119 0.227 0.384

D21S11 0.051 0.081 0.172 0.349

D18S51 0.040 0.068 0.150 0.335

D5S818 0.175 0.216 0.339 0.463

D13S317 0.101 0.139 0.252 0.401

D7S820 0.080 0.115 0.219 0.379

CSF1PO 0.134 0.173 0.288 0.428

TPOX 0.216 0.261 0.397 0.503

THO1 0.096 0.133 0.241 0.395

D16S539 0.105 0.143 0.256 0.404

Total 2 × 10−14 2 × 10−12 6 × 10−9 5 × 10−6
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Table 6

Identity probabilities for inbred relatives carrying alleles (a, b) and (c, d), and values for example of siblings
whose parents are first cousins

ibd alleles Probability Example*

a, b, c, d Δ1 1/64

a, b and c, d Δ2 0

a, b, c or a, b, d Δ3 2/64

a, b only Δ4 1/64

a, c, d or b, c, d Δ5 2/64

c, d only Δ6 1/64

(a, c and b, d) or (a, d and b, c) Δ7 15/64

a, c or a, d or b, c or b, d Δ8 30/64

none Δ9 12/64

*
First cousin provides alleles a, c to sibs, second cousin provides alleles b, d to sibs.
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